

Project LiquidLan
Final Report
May 08, 2006

Scott Baldwin

Mentor: Dr. Chi-Ren Shyu

Senior Capstone

1

Table of Contents

Abstract 2

1. Problem Definition 3
 1.1 Introduction
 1.2 Background
 1.3 Literature Survey
 1.4 Goals and Objectives
 1.5 Overall Approach

2. Requirements Analysis 15
 2.1 System constraints
 2.2 Performance Requirements
 2.3 Resource Requirements
 2.4 Alternative Solutions
 2.5 Evaluation metrics

3. Design Specifications 22
 3.1 Software
 3.2 Data Requirements
 3.3 Hardware
 3.4 Testing Methods
 3.5 Scheduling Diagrams with task assignments

4. Performance, Testing, and Evaluation 29

5. Summary and Conclusions 30

6. Future Work 31

References 32

2

Abstract

This report provides a detailed overview and analysis of my Senior Capstone

project, LiquidLan. Windows Networks have been around for many, many years, but have

always lacked a way to efficiently search them. At its core LiquidLan it is file sharing

system for Windows Networks. It differs from the rest in that it provides a custom

application client that hides all the underlying protocols from the user. Current

implementations rely on webpage interfaces, severely limiting their functionality.

LiquidLan has no such design limitations.

The main purpose of LiquidLan is to provide a fast search mechanism and feature-

rich download management tools. The system has two major components: an application

client and a search engine. In the sections that follow I will discuss the constraints,

requirements, and alternative solutions that exist. A detailed look at the design and

implementation will also be presented.

3

1. Problem Definition

1.1 Introduction

My capstone project, LiquidLan, solves an existing problem in a very innovative

way. At its core, LiquidLan is a software layer that extends the functionality of

Windows/Samba (SMB) networks. It consists of an application client for Windows and a

search engine/server for Linux. The server scans Windows/Samba networks for public

shares and indexes them into a database. The client is the front-end—it is what end-users

see. The client can perform searches, manage downloads, and other related tasks.

 LiquidLan is unlike any other implementation in that it uses an application client to

make the underlying Windows/Samba network transparent to the user. Current

implementations rely on webpage interfaces that display results as Universal Naming

Convention (UNC) resource paths. The functionality therefore is limited by the

capabilities of the Web browser. LiquidLan has no such design limitations.

One of the more innovative features of LiquidLan is a server address resolution

mechanism called Dynamic LiquidLan Configuration Protocol (DLCP). The client will

detect what network it is on and query dlcp.liquidlan.net to pull the server information for

that network and automatically configure itself. This requires no user intervention! As a

result, the user can literally download the installer, install the program, and start searching

and downloading without any configuration. Many users will feel as though they are using

a high-speed Gnutella network due to the client's look and feel.

 Nothing quite like LiquidLan has ever been done before. LiquidLan is the only

Windows Network search engine system I have seen that has a custom application client. I

expect there to be high demand on college campuses, provided the administration is open

4

to new ideas. Of course, controversy surrounds anything that is even remotely related to

file sharing, so I expect that some users will have difficulty gaining acceptance from their

administration to run LiquidLan on their campus network.

1.2 Background

The current state of the underlying technology is well-established.

Windows/Samba networks have been around for many, many years, but have always

lacked a way to efficiently search them. The main purpose of LiquidLan is to provide a

fast search mechanism and feature-rich download management tools. LiquidLan can also

facilitate the sharing of files through Windows API functions so that the user can easily

share directories on their hard drive.

Windows/Samba networks are in fact peer-to-peer networks, but LiquidLan

provides its services through a client-server communication model. An XML-based

protocol is used to exchange messages between the client and server. The communication

consists mainly of global configuration (from the server) when the client is initialized,

search queries from the client and corresponding search results from the server.

For the server I’m extending the Seek42 project, an SMB network search engine

originally written by a student at UMR. It is released under the GPL and is available to

download at http://sourceforge.net/projects/seek42/. The problem with Seek42 is that it

uses a webpage interface, which is very restrictive. The nice thing about Seek42 though is

that its implementation is almost pure ANSI C, and so it should easily port to other

environments.

For the client, I'm using an application framework based on the eMule (ED2K)

client for Windows. It is also released under the GPL and is available to download at

5

http://prdownloads.sourceforge.net/emule/. Since the ED2K protocol and functionality are

so drastically different from that of LiquidLan, I basically threw out most of the core

application logic and rewrote it. I have also added many new features to make it more

ideal for LANs.

The LiquidLan layer runs on top of Windows/Samba networks—I'm not actually

implementing a new protocol. The SMB/CIFS protocols are implemented in Windows and

Samba along with all the networking functions (master-browser elections, authentication,

etc). This underlying network is encapsulated by APIs and the Samba suite

(http://www.samba.org/). I chose to use a client-server model instead of P2P for

LiquidLan because it simplifies the implementation, and it also provides faster, more

reliable searching. The instantaneous searching would be impossible under a P2P model.

Also, the scalability that P2P provides isn’t necessary for local area networks.

Some of the current systems include PySMBSearch, UntzUntz LAN Scan,

Strangesearch, Netropolis, and Phynd. None of them come equipped with an application

front end. To clarify what I mean by "application front-end" and "webpage front-end"

consider this: An application front-end is what Napster had. A webpage interface is what

you have when you search Google. The difference is that an application front-end can do

lots of application-specific things that are not possible with a Web browser. All of the

projects I mentioned above rely on a webpage interface.

There are few, if any, research publications that specifically talk about SMB search

engines. The most relevant papers out there discuss Windows Networks and Samba in

general or search engines in general. Please refer to section 1.3, Literature Review, for

several articles that discuss various file sharing topics.

6

1.3 Literature Review

[1] Incentives in BitTorrent Induce Free Riding

In the last several years, BitTorrent has emerged as one of the most popular peer-

to-peer file distribution protocols. One of the key reasons why BitTorrent is so popular is

its effectiveness at encouraging cooperation among peers. In other words, there are fewer

free-loaders (people who take but never give back) using BitTorrent networks than with

other popular P2P file sharing systems.

While BitTorrent's "Give and Ye Shall Receive" attitude has paid off greatly, it is

far from perfect. The author discusses many of the perceived weaknesses of BitTorrent's

incentive mechanism. The author also offers an alternative solution based on some

relevant theory, and experimental evidence to suggest that the alternative solution would

outperform the current solution in practice.

 The author first presents an overview of BitTorrent and its incentive mechanism.

The protocols are complex, but the ideas are rather simple. Essentially, a BitTorrent

network consists of users exchanging file chunks with one another. It starts out with a

.torrent file that contains information to help the user find the master node (called a

tracker) and verify the integrity of each chunk that is downloaded. Once the user is

connected, the tracker will send it a list of all the peers. The peers will collaborate with

each other to determine who has which chunks. The chunks allow greater parallelism,

which in turn improves scalability. The scalability of BitTorrent is one of the primary

reasons why it is so popular.

 In a perfect world everyone would share, but we do not live in such a world.

BitTorrent's protocol, however, has managed to effectively coerce users into sharing—it's

called the incentive mechanism. Quite simply, this means that users are rewarded for

7

sharing and punished for not sharing. BitTorrent's incentive mechanism is surprisingly

simple. First, let N be the maximum number of peers a BitTorrent client is configured to

upload to at any given time. The client will then upload to the N peers that are giving it the

fastest download rates. All the other peers are denied service, and in turn they will deny

you back. This strategy is effective however because those nodes aren't as generous

anyway, hence the incentive to give. If you do not give, then eventually most of the peers

will turn their back on you. BitTorrent has one card up its sleeve though, and it's called the

"optimistic unchoking" (unchoking is BitTorrent lingo for uploading). The optimistic

unchoking mechanism works as follows: the BitTorrent client will probe for faster links

(that are not within the set of N peers) by uploading a chunk to it in order to reacquaint

with that node. If the node turns out to be slow, then the BitTorrent client will once again

ignore it and move on to test the next node not within N.

 The author, however, argues that this incentive mechanism can be improved upon.

The new mechanism is based on a strategy called Tit-For-Tat. The strategy is simple: In

the first exchange, the client will always cooperate (share). Thereafter, it does what the

other peer did in the previous exchange. [1] In other words, every node should share an

even amount of upload bandwidth with every other node. If there is a selfish node

(unwilling to share) then that node's actions will be reported by the tracker and all other

nodes will ignore it, resulting in starvation for that node. The incentive then is obvious—

share with others and they will share with you. It is simpler than BitTorrent's actual

mechanism, and the author shows evidence that it can outperform the actual mechanism in

practice.

 The author identifies four important properties of an efficient incentive mechanism.

First of all, the client must be nice; that is, never be the first to deny service. Second, the

8

client must be retaliatory; that is, if another peer refuses to upload then the client must

ignore that peer. Third, the client must be forgiving; that is, if that same peer decides later

on to start sharing, then the client should forgive and reciprocate the kindness. Finally, the

behavior must be clear and well understood. If all clients understand the rules, then the

system should work. [1]

 BitTorrent's incentive mechanism lacks some of these properties. For example,

once a BitTorrent client is already uploading to N peers, it will have to ignore the rest,

which isn't nice. [1] Consequently, the other peer's response will be mutual. Also, the

"optimistic unchoking" often goes uncompensated, which results in leaking resources to

free-loaders. This is especially undesirable for BitTorrent networks. Replacing the

incentive mechanism with a strategy similar to Tit-For-Tat would likely prevent such

problems.

[2] The Impact of DHT Routing Geometry on Resilience and Proximity

One of the integral parts of any peer-to-peer file sharing system is its routing

method. The performance, resilience, flexibility, and scalability of the overall system are

all affected. A relatively new class of routing tables in P2P, called Distributed Hash

Tables (DHTs), is the focus of the article.

DHTs partition ownership of a set of keys among all the nodes such that messages

can be efficiently routed to the unique owner of a given key. [6] Each node is like a bucket

in a hash table; each data object is associated with a key, mapping it to the IP-address of

the node hosting it. [6] Infrastructures based on DHTs are extremely scalable and robust

even in transient environments (continuous node arrivals and failures). In the event of

node failures, recovery algorithms are used to repopulate the routing tables with live nodes

9

so routing can continue. DHTs can be used to route around trouble before the recovery

mechanisms kick in. [2]

As the title of the article suggests, the main focus is comparing the routing

geometries of each algorithm. Geometry refers to the way in which neighbors and routes

are chosen, and how its routing paths are geometrically interpreted. Some examples

include the hypercube, ring, tree, and butterfly. [2] These various DHT geometries provide

different levels of flexibility for neighbor and route selection.

When evaluating a given DHT algorithm, it is important not to use a "black-box

approach" in which the entire algorithm is treated atomically. Instead one should break

down the algorithm into its many design components and then evaluate them

independently. This approach could lead to a hybrid design that incorporates the best

components of all the algorithms. [2]

In judging which is best, the author believes that flexibility is a paramount

consideration. Flexibility describes the amount of freedom available to choose neighbors

and next-hop paths. Flexible neighbor selection can be based on other criteria in addition

to the identifiers, such as proximity (i.e., latency). Given a set of neighbors and a

destination, the routing algorithm determines the choice of the next-hop. The flexibility

depends on how many options there are for the next-hop. If there aren't any, or only a few,

then the routing algorithm is likely to fare poorly under high failure rates. [2]

The choice of routing geometry is critical to other routing design issues. One of the

most important differences is the degree of flexibility. When comparing DHT algorithms

one should use a component-based analysis to fully understand which parts of the design

are smart and which parts need reworking.

10

[3] Tree-Based ALM using Proactive Route Maintenance

Traditionally, P2P systems have been based on unstructured networks, making it

difficult to come up with efficient routing algorithms. An example method might involve

forwarding messages with a Time-To-Live (TTL) field incremented at every hop. More

flexible routing would require a more organized structure. [3] Fortunately for P2P,

structured overlay networks have emerged in recent years.

An overlay network is a virtual network that is built on top of, or "overlays", many

different physical networks. A single link between any two nodes may comprise multiple

physical routers. Overlay P2P networks are self-organized and typically robust enough to

handle high rates of node entry and failure. One of the most common overlay structures is

a tree, called an overlay tree. The organization and routing of an overlay tree is directed by

prefix-matching of each node's identifier. A group of nodes can resolve its parent through

a group hash function. The parent node, in turn, chooses another node until the root node

is reached and the tree is constructed. [3]

When a parent node departs, it is important to restore the backup route quickly

since all the child nodes are disconnected. It usually takes several seconds to restore the

overlay tree, but using a proactive approach can cut the interruption time in half. [3] The

basic underlying idea is that each non-leaf node in the overlay tree pre-computes a backup

route. [3] Upon departure of a parent, any node can then use the backup route to find and

attach to another parent quickly. Thus affected nodes can receive data flow after lower

interruption time than that of the reactive approach.

11

[4] An XML-based Conversational Protocol for Web Services

The eXtensible Markup Language (XML) is essentially a general-purpose markup

language for defining special-purpose markup languages. It has become an increasingly

popular messaging framework for Web services. Many new protocols are derived from

XML, such as the well-known SOAP (Simple Object Access Protocol). SOAP, however,

has inherent drawbacks in that it cannot converse (negotiate) with Web servers to perform

specific operations. [4]

For example, several merchant sites may use different messages to provide the

same service. Or, the merchant sites may use the same message formats for placing an

order but use them in a difference sequence. Without prior knowledge of these protocols

and any semantic differences between them, the client is unable to communicate with the

merchants. With a dynamic communication protocol (such as the one proposed in the

article), the client could download a protocol specification from each merchant and

discover the protocols dynamically. The client could then implement the protocol and uses

it to access the services. [4] This example illustrates how a conversational protocol can

make Web services more interoperable.

[5] Design Choices for Content Distribution in P2P Networks

Many choices must be made when it comes to designing a P2P architecture. Two

popular solutions are the tree and mesh-based organizations. The distributed nature of

P2P, along with its lack of centralization and millions of users make realistic test

simulations difficult. This in turn makes it difficult to determine which architecture (tree

or mesh) is truly more efficient.

12

 In the mesh approach, nodes self-organize into groups (typically between 20 and

200 nodes) called neighbors. A cooperation strategy must exist in the protocol so that

neighbors cooperate with one another to leverage the available bandwidth and to rapidly

distribute the content. [5] In many cases, there must be an incentive mechanism to

cooperate.

 In the tree approach, nodes are organized in a tree-like structure. The tree starts out

with a root node and branches down until the leaf-nodes are reached. Three common tree

based architectures are Linear, Treek, and PTreek. [5] The main difference between these

architectures is whether they can run in parallel and whether all nodes (including leaf-

nodes) contribute resources.

 The author demonstrates experimentally that meshes outperform trees on average.

The cooperation strategy mentioned above plays an important role in the performance of

mesh overlays. The main factors are the peer selection strategy, the chunk selection

strategy, and the network degree. [5] The peer selection strategy determines how peers

select other peers to provide with bandwidth. Least Missing and Most Missing are

commonly used peer selection strategies. [5] The chunk selection strategy determines the

order in which chucks are exchanged. The network degree specifies the maximum number

of active exchanges (uploads/downloads) allowed per node at any given time.

 In conclusion, P2P design choices must be made carefully. After the architecture is

chosen (e.g., mesh), the designer must determine other policies and strategies, such as peer

selection, chunk selection, and network degree and ensure that these policies are cohesive

with one another. The designer must also decide the degree of parallelism and rules of

cooperation for the peers.

13

1.4. Goals & Objectives

 I have many goals and objectives in place for this project. I will gain the

satisfaction of creating a useful file sharing application that is open source and free of

charge to others. I will also learn a lot about multi-threaded programming, graphical user

interface programming, networking, XML-based protocol design, and object oriented

design. My ultimate goal for LiquidLan is for it to be the best LAN file sharing solution in

existence. I would also like to see several universities deploy it on their networks.

The development requires skills in several technologies that I had to learn outside

the curriculum (Visual C++/MFC, socket programming, multi-threaded programming, the

Windows API, debugging with gdb and the Visual Studio debugger).

1.5 Overall Approach

The design process model I have used is very similar to the waterfall process

model. During the requirements analysis process I looked at current systems, and decided

on what I wanted to model my own system after. Eventually that analysis is what led me

to use Seek42 and eMule as the server base and client framework, respectively. I started

off with a clean framework thanks to these quality open source projects. The

implementation and testing stages have been the longest stages. I have made substantial

modifications and extensions to the client and server, during which I have used the

feedback I get from friends to improve upon the design and functionality.

I think there are many advantages to my development approach. For one, it is

simple and efficient. My emphasis on a clean application framework has resulted in a very

reusable and extendable code. The class interfaces are clean and have strong cohesion. I

14

also thoroughly debug everything. Basically, I do everything possible to create high-

quality software.

Below is the LiquidLan system diagram. It illustrates how LiquidLan runs on top

of SMB network protocols (implemented in the WinAPI and Samba). The LiquidLan

software layer provides users with greater functionality, including the ability to search the

entire network and manage downloads.

Figure 1.0

15

2. Requirements Analysis

2.1 Introduction

The purpose of this paper is to present an analysis of the requirements involved in

the design and implementation of my Senior Capstone project, LiquidLan. Before I start,

however, I should state that the most important requirement of all is that it meets my goals

and everything I had envisioned from the onset. My goal is quite ambitious—that

LiquidLan be the ultimate service of its kind. So clearly I intend for LiquidLan to be more

than just a working prototype. As such, the design and implementation of the system will

comprise many requirements that must be carefully looked at and addressed.

For readers that are unfamiliar with what LiquidLan will accomplish, I will first

present an overall description of the system. I will then discuss all the internal, external,

and regulatory constraints. I will list the system components, development tools, and

software interfaces and libraries that will be used. Finally, I will delve into the

performance and resource requirements.

2.2 Overall Description

LiquidLan is a software layer that extends the functionality of Windows/Samba

(SMB) networks by providing fast search capabilities. It consists of an application client

(the client) for Windows and a search engine (the server) for Linux and other Unix

platforms. The server scans Windows/Samba networks for public shares and indexes them

within a flat-file database. The client is the front-end—it is what most end-users will see.

The client can send search requests, process search responses, manage downloads, and

perform all the standard functions expected from a high-end file sharing client.

16

 LiquidLan differs from the competition in that it provides an application client that

effectively hides the underlying Windows/Samba network from the user. Current

implementations rely on webpage interfaces that render search results as Universal Naming

Convention (UNC) resource paths (as hyperlinks). The functionality in these systems is

limited by the capabilities of the Web browser. LiquidLan has no such design limitations.

LiquidLan will also be capable of configuring itself automatically for the network it

is running on. The client will use a lookup service on liquidlan.net to pull the server

information for that network and automatically configure itself. Of course, the server

operator for that network will need to manage the record on liquidlan.net. As a result, a

user on the network can literally download the installer, install the program, and start

searching and downloading without any configuration. Many users will feel as though

they are using a high-speed Gnutella network due to the client's look and feel.

2.3 System Requirements and Constraints

2.3.1 Operating environment (external constraints)

The operating environment differs for the client and server. The client is

compatible with NT-based versions of Windows (NT/2000/XP/Vista/etc.). Unfortunately

the client cannot run on Windows 9x (95/98/ME) due to the Windows 9x API lacking a

necessary function in kernel32.dll. LiquidLan requires CopyFileEx() for facilitating SMB

file transfers. The Windows 9x API does have a routine called CopyFile(), but it does not

provide a call-back interface for reporting back transfer progress. In NT, the routine was

renamed to CopyFileEx() because of this extended functionality.

17

 The client's development environment is Microsoft Visual Studio 2005. The code

base is entirely C++; it uses the Microsoft Foundation Classes (MFC) and is not managed

by the .net framework. Visual Studio has an excellent integrated debugger that I find

extremely useful.

The server is designed for Linux and BSD, but should easily port to any Unix-like

environment (e.g., Solaris and Mac OSX). The server must be compiled so a compiler and

linker must be available. The environment must also have Samba installed, or at least the

smbclient tool, so that the server can scan hosts on SMB networks. The results from these

scans are indexed (saved to a database), but it is not necessary to have any Database

Management System (DBMS) such as MySQL installed because the server has database

management built-in (result structures are stored in flat files).

I have extended the server using a KDE-based IDE called KDevelop. KDE has

many of the essential features that are found in Visual Studio, such as integrated

debugging, auto-completion, color-coded syntax, code collapsing, and project management

tools. The integrated debugger is a front-end for gdb, and it is quite excellent. It is

certainly superior to using gdb from the command line (if you have ever done so then you

know how cumbersome it is). I have used the KDevelop debugger extensively throughout

development.

2.3.2 Market users and characteristics

I anticipate that end-users will primarily consist of college students living on

campus (connected to a residence hall computer network). Since LiquidLan will be free

and open source, I think the economic feasibility is undeniable. I expect for there to be

18

high demand for LiquidLan once it has been deployed at several networks and has

established a reputation for being a fast, easy, and effective file sharing solution for Local

Area Networks. The competitive forces that exist are inferior solutions with far less

functionality than LiquidLan (as discussed above).

The most important regulatory constraint that I must consider is copyright law such

as the DMCA and recent precedent such as the one set last year by the Supreme Court's

MGM v. Grokster ruling. I must be careful in my approach and make a concerted effort to

respect and enforce DRM in LiquidLan. I am confident at this point that LiquidLan is

completely non-infringing, but there is obviously some risk involved.

Customers (users) will require that LiquidLan have an intuitive user interface, solid

performance, and the ability to search for and download files. LiquidLan provides all this

and more, so I expect for it to be well-received when it is finished and released.

2.3.3 Environmental constraints

There are several human factors that will affect the success and acceptance of

LiquidLan. For every network that it runs on, one user must operate the server and

configure/manage that network's record on liquidlan.net. In addition, unless the operator

has some kind of authority over the network in which the server is running on, the

administration in charge must approve of the LiquidLan service. I have gone to great

lengths to ensure that the LiquidLan system is reliable, efficient, non-infringing, and high

quality, so I hope administrations will accept it.

2.3.4 System components

19

 LiquidLan can be viewed as two components: an application client and a server.

The client can be further broken down into networking, threading, and user interface

components. The server can be further broken down into three components: the scanner

(fetch), the search engine (search), and the daemon that continually monitors which hosts

are alive and which are down (alived).

 Another key component to LiquidLan is SMB/CIFS, the protocol that Windows

Networks are based upon. However, LiquidLan runs on top of this layer, with Samba and

the Windows API in between.

2.3.5 Software interfaces and libraries

The software interfaces and libraries for the client are the standard C++ libraries,

Microsoft Foundation Classes (MFC), Win32 API, COM (for the integrated Web browser),

the Windows Registry, and XML for communication with the server.

 The software interfaces and libraries for the server are the standard C libraries,

Unix/POSIX system call interface, smbclient (part of the Samba suite), and XML for

communication with the client.

2.3.6 Communication interfaces

 The communication interfaces for both the client and server consist of XML for

message passing, and TCP/IP as the protocol suite for doing so. Both do so via an

asynchronous (non-blocking) socket. Also, the client and server both require interfaces to

the underlying Windows network (as previously discussed). The server also uses NetBIOS

to resolve the NetBIOS name of each host it scans.

20

2.3.7 Hardware interfaces

 The hardware interfaces required for using LiquidLan is a network link, and a

computer with at least 64MB system memory and a 300 MHz processor. To use the client

the computer must be an x86 architecture to run Windows.

2.3.8 System maintenance

The software maintenance life cycle and support will consist of improving and

extending the system, fixing bugs, fixing security holes, etc. This will be administered

through a Version Control system such as CVS. I may also use a bug-tracking solution

such as Bugzilla.

2.4 Performance requirements

LiquidLan performs a lot of tasks that involve heavy network and disk I/O. Since

network and disk access both tend to be system bottlenecks, it is extremely important for

LiquidLan to have excellent performance. The client and server are both implemented in

C or C++ and thus have good performance in general. Regarding the I/O, the file transfers

are actually facilitated by Windows API calls, which results in highly efficient file

transfers. LiquidLan can even enforce transfer quotas (determined by the server operator)

that limit the number of concurrent transfers to reduce disk trashing and network

congestion. LiquidLan provides other policies that can be adjusted to optimize

performance for a given network. Therefore, LiquidLan can accommodate almost any

user/network's performance requirements.

21

2.5 Resource requirements

 The resource requirements of this project consist of time, money, and equipment.

When LiquidLan is complete, hundreds of hours of time will have been invested to

develop a fully-function system. The software used to develop it (Visual Studio) is also

quite expensive. The equipment used to run the system includes a computer network with

at least one host running a server. The remaining hosts can use the client to send search

requests to the server and download files from other hosts.

2.6 Evaluation metrics

I may choose to use methods outlined in the ISO 9126 standard for evaluating the

functionality, reliability, usability, efficiency, maintainability, and portability of the

system. Since I will be using SourceForge to distribute LiquidLan, I may also use some of

the tools that it provides (such as download statistics, bug reports, feedback, etc.). I can

also benchmark the performance of my system, and compare it against the performance of

similar software applications.

22

3. Design Specifications

3.1 Software

The software design is largely influenced by objected oriented paradigms. The

client application's framework is modeled after that of the eMule project

(http://www.emule-project.net/). Thanks to tight integration between Microsoft Visio and

Visual Studio, I was easily able to reverse engineer the client application's code base into a

formal UML specification. To provide a graphical view of the software design, I modeled

the specification into a UML diagram by dividing it into four logical subsystems: core

logic, graphical user interface, threading, and networking. These diagrams are presented in

the pages that follow.

The server software is based on the Seek42 project (http://seek42.sourceforge.net/)

and thus it has a very similar design. Since the code base is pure ANSI C, the project does

not have an object oriented design, but it is quite modular nonetheless. Program entities

and data structures are abstracted as much as possible.

The design process model I have used is very similar to the waterfall process

model. I think there are many advantages to the design approach I took. For one, it is

simple and efficient. My emphasis on a clean application framework has resulted in a very

reusable and extendable code. I also thoroughly tested just about everything. The end

result is high-quality software.

+G
et

Fi
le

N
am

e(
) :

 c
ha

r *
+G

et
Fi

le
S

iz
e(

) :
 <

un
sp

ec
ifi

ed
>

+G
et

Fi
le

Ty
pe

()
 :

<u
ns

pe
ci

fie
d>

+S
et

Fi
le

N
am

e(
in

 n
ew

_n
am

e
: c

ha
r*

)
+R

es
ol

ve
Fi

le
Ty

pe
()

#m
_f

ile
na

m
e

: c
ha

r *
#m

_f
ile

si
ze

#m
_f

ile
ty

pe

C
A

bs
tr

ac
tF

ile

+C
D

ow
nl

oa
dJ

ob
(in

 to
do

w
nl

oa
d

: C
P

ar
tF

ile
*,

 in
 o

sv
er

si
on

)
#C

D
ow

nl
oa

dJ
ob

()

+m
_s

ha
re

dF
ile

 :
C

P
ar

tF
ile

 *
+m

_o
sV

er
si

on

C
D

ow
nl

oa
dJ

ob

-P
ro

ce
ss

Jo
b(

in
 p

Jo
bD

es
c

: I
Jo

bD
es

c*
)

C
D

ow
nl

oa
dP

ro
c

+P
ro

ce
ss

()
+B

eg
in

E
xt

re
m

eM
od

e(
in

 fi
le

 :
C

P
ar

tF
ile

*)
+E

nd
E

xt
re

m
eM

od
e(

in
 n

ew
_p

rio
rit

y
: i

nt
 =

 P
R

_N
O

R
M

AL
)

+F
ire

up
Th

re
ad

(in
 fi

le
 :

C
P

ar
tF

ile
*)

+S
av

eQ
ue

ue
In

R
eg

is
try

()
+L

oa
dQ

ue
ue

Fr
om

R
eg

is
try

()
+A

dd
D

ow
nl

oa
d(

in
 n

ew
fil

e
: C

Pa
rtF

ile
*)

-m
_f

ile
lis

t
-m

_t
hr

ea
dP

oo
l :

 C
D

ow
nl

oa
dT

hr
ea

dP
oo

l
-m

_s
ha

re
df

ile
lis

t :
 C

S
ha

re
dF

ile
Li

st
 *

-m
_a

pp
_p

re
fs

 :
C

P
re

fe
re

nc
es

 *
-h

_t
im

er

C
D

ow
nl

oa
dQ

ue
ue

+G
et

P
at

h(
) :

 c
ha

r *
+S

et
P

at
h(

in
 p

at
h

: c
ha

r*
)

+C
re

at
eF

ro
m

Fi
le

(in
 d

ir
: c

ha
r*

, i
n

na
m

e
: c

ha
r*

) :
 b

oo
l

+M
at

ch
es

(in
 te

st
fil

e
: C

K
no

w
nF

ile
*)

 :
bo

ol

+m
_d

at
e

#m
_d

ire
ct

or
y

: c
ha

r *

C
K

no
w

nF
ile

+I
ni

t()
 :

bo
ol

+C
le

ar
()

+S
af

eA
dd

K
Fi

le
(in

 to
ad

d
: C

K
no

w
nF

ile
*)

+R
em

ov
eK

Fi
le

(in
 to

re
m

ov
e

: C
K

no
w

nF
ile

*)
 :

bo
ol

+F
in

dK
no

w
nF

ile
(in

 fi
le

na
m

e
: c

ha
r*

, i
n

in
_s

iz
e)

 :
C

Kn
ow

nF
ile

 *
+G

et
To

ta
lS

iz
e(

) :
 <

un
sp

ec
ifi

ed
>

+l
is

t_
m

ut
-m

_f
re

e_
m

em
 :

bo
ol

C
K

no
w

nF
ile

Li
st

+G
et

Er
ro

rS
tri

ng
()

 :
ch

ar
 *

+G
et

R
em

ot
eF

ile
P

at
h(

in
 b

uf
 :

ch
ar

*)
 :

bo
ol

+G
et

Lo
ca

lF
ile

D
es

t(i
n

bu
f :

 c
ha

r*
) :

 b
oo

l
+S

et
S

ta
tu

s(
in

 n
s)

+S
et

P
rio

rit
y(

in
 n

p)
+D

el
et

eF
ile

()

-m
_p

rio
rit

y
-m

_s
ou

rc
eI

P
[1

6]
 :

ch
ar

-m
_l

as
t_

er
ro

r :
 c

ha
r *

-m
_s

ta
tu

s

C
Pa

rt
Fi

le

#S
et

S
ta

nd
ar

dV
al

ue
s(

)
-L

oa
dP

re
fe

re
nc

es
()

-S
av

eP
re

fe
re

nc
es

()

-m
_a

pp
_d

ir
: c

ha
r *

-m
_p

re
fs

 :
<u

ns
pe

ci
fie

d>
 *

C
Pr

ef
er

en
ce

s

+o
pe

ra
to

r =
=(

in
ou

t s
id

 :
C

S
ea

rc
hI

D
) :

 in
t

+o
pe

ra
to

r !
=(

in
ou

t s
id

 :
C

S
ea

rc
hI

D
) :

 in
t

+i
d

+s
ub

id

«s
tru

ct
»C

Se
ar

ch
ID

+C
S

ea
rc

hJ
ob

(in
 s

r :
 C

Se
ar

ch
R

eq
ue

st
*)

#C
S

ea
rc

hJ
ob

()

+m
_s

ea
rc

hR
eq

ue
st

 :
C

S
ea

rc
hR

eq
ue

st
 *

C
Se

ar
ch

Jo
b

+C
le

ar
()

+R
em

ov
eR

es
ul

ts
(in

 to
de

l :
 C

S
ea

rc
hF

ile
*)

+G
et

R
es

ul
tC

ou
nt

()
 :

<u
ns

pe
ci

fie
d>

-A
dd

To
Li

st
(in

 to
ad

d
: C

S
ea

rc
hF

ile
*)

-m
_l

is
t

-m
_o

ut
pu

tw
nd

 :
C

S
ea

rc
hL

is
tC

trl
 *

-m
_c

ur
re

nt
_s

ea
rc

h
: C

S
ea

rc
hI

D

C
Se

ar
ch

Li
st

-P
ro

ce
ss

Jo
b(

in
 p

Jo
bD

es
c

: I
Jo

bD
es

c*
)

C
Se

ar
ch

Pr
oc

+C
le

ar
K

ey
()

 :
<u

ns
pe

ci
fie

d>
+S

et
R

oo
tK

ey
(in

 h
R

oo
tK

ey
) :

 <
un

sp
ec

ifi
ed

>
+C

re
at

eK
ey

(in
 s

trK
ey

) :
 <

un
sp

ec
ifi

ed
>

+D
el

et
eK

ey
(in

 s
trK

ey
) :

 <
un

sp
ec

ifi
ed

>
+D

el
et

eV
al

ue
(in

 s
trN

am
e)

 :
<u

ns
pe

ci
fie

d>
+S

et
K

ey
(in

 s
trK

ey
, i

n
bC

an
C

re
at

e)
 :

<u
ns

pe
ci

fie
d>

+m
_n

La
st

E
rr

or
 :

in
t

#m
_h

R
oo

tK
ey

C
R

eg
is

tr
y

+C
em

ul
eA

pp
(in

 lp
sz

A
pp

N
am

e
: <

un
sp

ec
ifi

ed
>

=
0)

+I
ni

tIn
st

an
ce

()
 :

<u
ns

pe
ci

fie
d>

+I
sE

xi
tin

g(
) :

 b
oo

l
#P

ro
ce

ss
C

om
m

an
dl

in
e(

) :
 b

oo
l

+e
m

ul
ed

lg
 :

C
em

ul
eD

lg
 *

+k
no

w
nf

ile
s

: C
K

no
w

nF
ile

Li
st

 *
+s

ha
re

df
ile

s
: C

S
ha

re
dF

ile
Li

st
 *

+s
ea

rc
hl

is
t :

 C
Se

ar
ch

Li
st

 *
+d

ow
nl

oa
dq

ue
ue

 :
C

D
ow

nl
oa

dQ
ue

ue
 *

+s
er

ve
rc

on
ne

ct
 :

C
S

er
ve

rC
on

ne
ct

 *
+g

lo
b_

pr
ef

s
: C

P
re

fe
re

nc
es

 *

C
em

ul
eA

pp

+I
ni

t(i
n

nS
ea

rc
hI

D
 :

C
Se

ar
ch

ID
*)

+G
et

S
ea

rc
hI

D
()

 :
C

S
ea

rc
hI

D
 *

-B
ai

l()

+m
_h

os
tIP

[1
6]

 :
ch

ar
+m

_h
os

tn
am

e[
32

] :
 c

ha
r

+m
_S

ea
rc

hI
D

 :
C

Se
ar

ch
ID

+m
_c

or
ru

pt
 :

bo
ol

C
Se

ar
ch

Fi
le

3.1 Software Specification (UML)

#O
nL

B
ut

to
nU

p(
in

 n
Fl

ag
s,

 in
 p

oi
nt

)
+m

_b
C

lo
se

ab
le

 :
bo

ol
C

C
lo

sa
bl

eT
ab

C
tr

l
+C

re
at

e(
in

 p
W

nd
P

ar
en

t :
 <

un
sp

ec
ifi

ed
>*

) :
 in

t
+S

ho
w

()

#m
_s

trC
ap

tio
n

#m
_r

cT
ex

t
-m

_i
m

gS
pl

as
h

: C
E

nB
itm

ap

C
C

re
di

ts
D

lg

+A
dd

Fi
le

(in
 to

ad
d

: C
P

ar
tF

ile
*)

+R
em

ov
eF

ile
(in

 n
am

e
: c

ha
r*

, i
n

si
ze

) :
 b

oo
l

+C
an

ce
lA

ll(
)

+P
au

se
A

ll(
)

+R
es

um
eA

ll(
)

+C
le

ar
C

om
pl

et
ed

(in
 fo

rc
e_

cl
ea

r_
al

l :
 b

oo
l =

 fa
ls

e)

-li
st

co
nt

en
t

C
D

ow
nl

oa
dL

is
tC

tr
l

+S
et

U
R

L(
in

 s
tr)

+S
et

V
is

ite
d(

in
 b

V
is

ite
d

: <
un

sp
ec

ifi
ed

>
=

1)
#O

nC
lic

ke
d(

) :
 v

oi
d

#m
_b

V
is

ite
d

#m
_s

trU
R

L

C
H

yp
er

Li
nk

+O
nD

oc
um

en
tC

om
pl

et
e(

in
 U

R
L)

+O
nD

ow
nl

oa
dB

eg
in

()
+O

nP
ro

gr
es

sC
ha

ng
e(

in
 p

ro
gr

es
s

: i
nt

)
+O

nD
ow

nl
oa

dC
om

pl
et

e(
)

+m
_c

on
ta

in
er

 :
C

W
eb

W
nd

 *
C

Li
qu

id
B

ro
w

se
r

+C
Li

qu
id

To
ol

ba
rC

trl
()

+~
C

Li
qu

id
To

ol
ba

rC
trl

()
+O

nE
ra

se
B

kg
nd

(in
 p

D
C

 :
<u

ns
pe

ci
fie

d>
*)

 :
<u

ns
pe

ci
fie

d>
+I

ni
t()

+L
oc

al
iz

e(
)

+c
la

ss
C

Li
qu

id
To

ol
ba

rC
trl

#m
_I

m
gL

is
t

#m
_b

m
pB

ac
kg

ro
un

d
#m

_c
bB

ac
kB

ru
sh

C
Li

qu
id

To
ol

ba
rC

tr
l

+S
et

N
am

e(
in

 lp
sz

N
am

e)
+U

pd
at

e(
in

 iI
te

m
 :

in
t)

: <
un

sp
ec

ifi
ed

>
+R

es
to

re
D

ef
au

ltL
ay

ou
t()

+S
el

ec
tA

ll(
)

#m
_N

am
e

#m
_b

C
us

to
m

D
ra

w
 :

bo
ol

#m
_c

rW
in

do
w

Te
xt

C
M

ul
eL

is
tC

tr
l

+O
nI

ni
tD

ia
lo

g(
) :

 <
un

sp
ec

ifi
ed

>
+L

oc
al

iz
e(

)
+S

et
P

re
fs

(in
 in

_p
re

fs
 :

C
P

re
fe

re
nc

es
*)

+m
_w

nd
G

en
er

al
+m

_w
nd

S
er

ve
r

+m
_w

nd
D

ow
nl

oa
ds

+m
_w

nd
S

ea
rc

hi
ng

C
Pr

ef
er

en
ce

sD
lg

#E
na

bl
eS

av
eR

es
to

re
(in

 p
sz

S
ec

tio
n,

 in
 b

R
ec

tO
nl

y
: <

un
sp

ec
ifi

ed
>

=
0)

#G
et

R
es

iz
ab

le
W

nd
()

 :
<u

ns
pe

ci
fie

d>
 *

#O
nS

iz
e(

in
 n

Ty
pe

, i
n

cx
 :

in
t,

in
 c

y
: i

nt
) :

 v
oi

d

-m
_b

E
na

bl
eS

av
eR

es
to

re
C

R
es

iz
ab

le
D

ia
lo

g

+R
ef

re
sh

U
I()

+C
le

ar
S

ea
rc

hF
ie

ld
s(

)
+D

ow
nl

oa
dS

el
ec

te
d(

)
+D

el
et

eS
ea

rc
h(

in
 n

S
ea

rc
hI

D
)

#S
ta

rtS
ea

rc
h(

in
 v

ia
_n

ex
t :

 b
oo

l =
 fa

ls
e)

 :
<u

ns
pe

ci
fie

d>
#F

as
tF

or
w

ar
d(

) :
 b

oo
l

#R
ew

in
d(

) :
 b

oo
l

+m
_s

ea
rc

h_
st

at
es

+m
_s

ea
rc

hl
is

tc
trl

 :
C

S
ea

rc
hL

is
tC

trl
-m

_s
ea

rc
h_

co
un

te
r

-m
_a

ct
iv

e_
se

ar
ch

 :
C

S
ea

rc
hI

D

C
Se

ar
ch

D
lg

+A
dd

R
es

ul
t(i

n
to

sh
ow

 :
C

S
ea

rc
hF

ile
*)

+R
em

ov
eR

es
ul

t(i
n

to
re

m
ov

e
: C

S
ea

rc
hF

ile
*)

+S
ho

w
R

es
ul

ts
(in

 n
R

es
ul

ts
ID

 :
C

S
ea

rc
hI

D
*)

+S
ho

w
S

ta
tu

s(
in

 re
s_

st
rin

g)

-m
_s

ea
rc

hl
is

t :
 C

S
ea

rc
hL

is
t *

-m
_n

R
es

ul
ts

ID
 :

C
S

ea
rc

hI
D

C
Se

ar
ch

Li
st

C
tr

l

+I
ni

t()
+S

ho
w

Fi
le

Li
st

()
+L

au
nc

hE
xp

lo
re

r(
)

+O
nK

ey
D

ow
n(

in
 n

C
ha

r,
in

 n
Fl

ag
s)

 :
vo

id

-m
_f

ile
lis

t :
 C

S
ha

re
dF

ile
Li

st
 *

C
Sh

ar
ed

Fi
le

sC
tr

l

#O
nI

ni
tD

ia
lo

g(
) :

 <
un

sp
ec

ifi
ed

>
+m

_s
ha

re
df

ile
sc

trl
 :

C
S

ha
re

dF
ile

sC
trl

C
Sh

ar
ed

Fi
le

sW
nd

+C
re

at
e(

)
+S

ho
w

()
+H

id
e(

)
#D

ra
w

W
in

do
w

(in
 p

D
C

 :
<u

ns
pe

ci
fie

d>
*)

#m
_p

W
nd

P
ar

en
t :

 <
un

sp
ec

ifi
ed

>
*

#m
_b

itm
ap

 :
C

E
nB

itm
ap

C
Sp

la
sh

Ex

+C
re

at
e(

in
 p

W
nd

P
ar

en
t :

 <
un

sp
ec

ifi
ed

>*
) :

 in
t

+S
ho

w
()

+H
id

e(
)

+m
_s

trC
ap

tio
n

+m
_r

cT
ex

t
+m

_b
M

ou
se

Is
O

ve
r

C
Ta

sk
ba

rN
ot

ifi
er

+L
oc

al
iz

e(
)

#S
et

In
itL

ay
ou

t()
#G

et
Ite

m
U

nd
er

M
ou

se
(in

 c
trl

 :
<u

ns
pe

ci
fie

d>
*)

 :
in

t

+m
_d

ow
nl

oa
dl

is
tc

trl
 :

C
D

ow
nl

oa
dL

is
tC

trl
C

Tr
an

sf
er

W
nd

#O
nD

oc
um

en
tC

om
pl

et
e(

in
 p

N
M

H
D

R
 :

<u
ns

pe
ci

fie
d>

*,
 in

 p
R

es
ul

t :
 <

un
sp

ec
ifi

ed
>*

) :
 v

oi
d

#O
nD

ow
nl

oa
dB

eg
in

(in
 p

N
M

H
D

R
 :

<u
ns

pe
ci

fie
d>

*,
 in

 p
R

es
ul

t :
 <

un
sp

ec
ifi

ed
>*

) :
 v

oi
d

#O
nP

ro
gr

es
sC

ha
ng

e(
in

 p
N

M
H

D
R

 :
<u

ns
pe

ci
fie

d>
*,

 in
 p

R
es

ul
t :

 <
un

sp
ec

ifi
ed

>*
) :

 v
oi

d
#O

nD
ow

nl
oa

dC
om

pl
et

e(
in

 p
N

M
H

D
R

 :
<u

ns
pe

ci
fie

d>
*,

 in
 p

R
es

ul
t :

 <
un

sp
ec

ifi
ed

>*
) :

 v
oi

d

+m
_u

rl
+m

_b
ro

w
se

r :
 C

Li
qu

id
B

ro
w

se
r

+m
_w

nd
To

ol
B

ar
 :

C
To

ol
B

ar
E

x

C
W

eb
W

nd

+L
oc

al
iz

e(
)

+S
ho

w
N

ot
ifi

er
(in

 T
ex

t)
+S

et
A

ct
iv

eD
ia

lo
g(

in
 d

lg
 :

<u
ns

pe
ci

fie
d>

*)
-P

ar
tit

io
nS

ta
tu

sb
ar

()

+m
_p

re
fe

re
nc

es
w

nd
 :

C
P

re
fe

re
nc

es
D

lg
+m

_t
ra

ns
fe

rw
nd

 :
C

Tr
an

sf
er

W
nd

+m
_s

ha
re

df
ile

sw
nd

 :
C

Sh
ar

ed
Fi

le
sW

nd
+m

_s
ea

rc
hw

nd
 :

C
S

ea
rc

hD
lg

+m
_w

eb
w

nd
 :

C
W

eb
W

nd
+m

_a
ct

iv
ew

nd
 :

<u
ns

pe
ci

fie
d>

 *
+m

_s
ta

tu
sb

ar
+m

_t
oo

lb
ar

 :
C

Li
qu

id
To

ol
ba

rC
trl

+m
_n

ot
ifi

er
 :

C
Ta

sk
ba

rN
ot

ifi
er

+m
_a

ni
m

C
em

ul
eD

lg

+C
D

ow
nl

oa
dJ

ob
(in

 to
do

w
nl

oa
d

: C
P

ar
tF

ile
*,

 in
 o

sv
er

si
on

)
#C

D
ow

nl
oa

dJ
ob

()

+m
_s

ha
re

dF
ile

 :
C

P
ar

tF
ile

 *
+m

_o
sV

er
si

on

C
D

ow
nl

oa
dJ

ob

-P
ro

ce
ss

Jo
b(

in
 p

Jo
bD

es
c

: I
Jo

bD
es

c*
)

C
D

ow
nl

oa
dP

ro
c

#C
D

ow
nl

oa
dT

hr
ea

d(
)

+R
un

()
: i

nt
+I

ni
tIn

st
an

ce
()

 :
<u

ns
pe

ci
fie

d>
+S

et
S

er
ve

r(
in

 s
er

ve
r :

 v
oi

d*
)

+S
et

Fi
le

(in
 to

do
w

nl
oa

d
: C

P
ar

tF
ile

*)
+G

et
S

er
ve

r(
) :

 v
oi

d
*

+G
et

Fi
le

()
 :

C
P

ar
tF

ile
 *

+c
la

ss
C

D
ow

nl
oa

dT
hr

ea
d

-m
_t

po
ol

_s
er

ve
r :

 v
oi

d
*

-m
_s

ha
re

dF
ile

 :
C

P
ar

tF
ile

 *

C
D

ow
nl

oa
dT

hr
ea

d

+C
re

at
eT

hr
ea

d(
) :

 <
un

sp
ec

ifi
ed

>
*

+S
et

Th
re

ad
D

at
a(

in
 p

IJ
ob

 :
IJ

ob
D

es
c*

, i
n

pT
hr

ea
d

: <
un

sp
ec

ifi
ed

>*
)

+B
eg

in
E

xt
re

m
e(

in
 fi

le
 :

C
P

ar
tF

ile
*)

+E
nd

E
xt

re
m

e(
in

 fi
le

 :
C

P
ar

tF
ile

*)
+G

et
E

xt
re

m
eT

hr
ea

dH
an

dl
e(

in
 fi

le
 :

C
P

ar
tF

ile
*)

 :
<u

ns
pe

ci
fie

d>

C
D

ow
nl

oa
dT

hr
ea

dP
oo

l

+C
S

ea
rc

hJ
ob

(in
 s

r :
 C

S
ea

rc
hR

eq
ue

st
*)

#C
S

ea
rc

hJ
ob

()

+m
_s

ea
rc

hR
eq

ue
st

 :
C

S
ea

rc
hR

eq
ue

st
 *

C
Se

ar
ch

Jo
b

-P
ro

ce
ss

Jo
b(

in
 p

Jo
bD

es
c

: I
Jo

bD
es

c*
)

C
Se

ar
ch

Pr
oc

#C
Se

ar
ch

Th
re

ad
()

+R
un

()
: i

nt
+I

ni
tIn

st
an

ce
()

 :
<u

ns
pe

ci
fie

d>
+S

et
S

er
ve

r(
in

 s
er

ve
r :

 v
oi

d*
)

+S
et

R
eq

ue
st

(in
 s

r :
 C

S
ea

rc
hR

eq
ue

st
*)

+G
et

S
er

ve
r(

) :
 v

oi
d

*
+G

et
R

eq
ue

st
()

 :
C

S
ea

rc
hR

eq
ue

st
 *

+c
la

ss
C

S
ea

rc
hT

hr
ea

d
-m

_s
er

ve
r :

 v
oi

d
*

-m
_s

ea
rc

hR
eq

ue
st

 :
C

S
ea

rc
hR

eq
ue

st
 *

C
Se

ar
ch

Th
re

ad

+C
re

at
eT

hr
ea

d(
) :

 <
un

sp
ec

ifi
ed

>
*

+S
et

Th
re

ad
D

at
a(

in
 p

IJ
ob

 :
IJ

ob
D

es
c*

, i
n

pT
hr

ea
d

: <
un

sp
ec

ifi
ed

>*
)

C
Se

ar
ch

Th
re

ad
Po

ol

+S
ta

rt(
in

 n
S

ta
tic

 :
un

si
gn

ed
 s

ho
rt,

 in
 n

M
ax

 :
un

si
gn

ed
 s

ho
rt)

+S
to

p(
in

 b
H

as
h

: b
oo

l =
 fa

ls
e,

 in
 p

W
or

ke
r :

 IW
or

ke
r*

 =
 0

)
+P

ro
ce

ss
Jo

b(
in

 p
Jo

b
: I

Jo
bD

es
c*

, i
n

pW
or

ke
r :

 IW
or

ke
r*

)
#G

et
Th

re
ad

P
oo

lS
ta

tu
s(

) :
 T

hr
ea

dP
oo

lS
ta

tu
s

#C
ha

ng
eS

ta
tu

s(
in

 th
re

ad
Id

, i
n

st
at

us
 :

bo
ol

)
#A

dd
Th

re
ad

s(
)

#R
em

ov
eT

hr
ea

ds
()

#C
re

at
eT

hr
ea

d(
) :

 <
un

sp
ec

ifi
ed

>
*

#S
et

Th
re

ad
D

at
a(

in
 p

IJ
ob

 :
IJ

ob
D

es
c*

, i
n

pT
hr

ea
d

: <
un

sp
ec

ifi
ed

>*
)

#m
_h

M
gr

Th
re

ad
#m

_n
N

um
be

rO
fS

ta
tic

Th
re

ad
s

#m
_n

N
um

be
rO

fT
ot

al
Th

re
ad

s
#m

_t
hr

ea
dM

ap
#m

_c
rit

ic
al

_s
ec

tio
n

C
Th

re
ad

Po
ol

«s
tru

ct
»I

Jo
bD

es
c

+P
ro

ce
ss

Jo
b(

in
 p

Jo
b

: I
Jo

bD
es

c*
)

«s
tru

ct
»I

W
or

ke
r

+A
sy

nc
S

en
dB

uf
f(i

n
lp

B
uf

 :
vo

id
*,

 in
 n

B
uf

Le
n

: i
nt

)
+O

nC
on

ne
ct

(in
 n

E
rr

or
C

od
e

: i
nt

)
+O

nC
lo

se
(in

 n
E

rr
or

C
od

e
: i

nt
)

+O
nR

ec
ei

ve
(in

 n
E

rr
or

C
od

e
: i

nt
)

+O
nS

en
d(

in
 n

E
rr

or
C

od
e

: i
nt

)
+R

ec
ei

ve
(in

 lp
B

uf
 :

vo
id

*,
 in

 n
B

uf
Le

n
: i

nt
, i

n
nF

la
gs

 :
in

t =
 0

) :
 in

t
+S

en
d(

in
 lp

B
uf

 :
co

ns
t v

oi
d*

, i
n

nB
uf

Le
n

: i
nt

, i
n

nF
la

gs
 :

in
t =

 0
) :

 in
t

+m
_s

ea
rc

hR
eq

ue
st

 :
C

S
ea

rc
hR

eq
ue

st
 *

+m
_p

Th
re

ad
 :

<u
ns

pe
ci

fie
d>

 *
+m

_f
C

on
ne

ct
ed

+m
_s

en
dB

uf
[S

E
E

K_
S

E
N

D
_B

U
F_

S
IZ

E
] :

 c
ha

r
+m

_r
ec

vB
uf

[S
E

E
K

_R
E

C
V

_B
U

F_
S

IZ
E

] :
 c

ha
r

C
A

sy
nc

So
ck

Ex

+C
D

ow
nl

oa
dJ

ob
(in

 to
do

w
nl

oa
d

: C
P

ar
tF

ile
*,

 in
 o

sv
er

si
on

)
#C

D
ow

nl
oa

dJ
ob

()

+m
_s

ha
re

dF
ile

 :
C

P
ar

tF
ile

 *
+m

_o
sV

er
si

on

C
D

ow
nl

oa
dJ

ob+E
xe

cu
te

()
+G

et
R

es
po

ns
e(

) :
 c

ha
r *

-C
on

ne
ct

()
: b

oo
l

-S
en

dR
ec

ei
ve

()
 :

bo
ol

-m
_s

oc
k

-m
_r

es
p

: c
ha

r *
-m

_r
eqC

Fl
ux

R
eq

ue
st

+E
xe

cu
te

()
+G

et
R

es
po

ns
e(

) :
 c

ha
r *

+G
et

S
ea

rc
hI

D
()

 :
C

S
ea

rc
hI

D
 *

-C
on

ne
ct

()
 :

bo
ol

-S
en

dR
ec

ei
ve

()
 :

bo
ol

-m
_s

oc
k

-m
_r

es
p

: c
ha

r *
-m

_r
eq

-m
_s

id
 :

C
S

ea
rc

hI
D

C
Se

ar
ch

R
eq

ue
st

+C
S

ea
rc

hJ
ob

(in
 s

r :
 C

S
ea

rc
hR

eq
ue

st
*)

#C
S

ea
rc

hJ
ob

()

+m
_s

ea
rc

hR
eq

ue
st

 :
C

S
ea

rc
hR

eq
ue

st
 *

C
Se

ar
ch

Jo
b

+R
et

ry
C

on
ne

ct
C

al
lb

ac
k(

in
 h

W
nd

, i
n

nM
sg

, i
n

nI
d,

 in
 d

w
Ti

m
e)

+I
sC

on
ne

ct
in

g(
) :

 b
oo

l
+I

sC
on

ne
ct

ed
()

 :
bo

ol
+S

et
C

on
ne

ct
ed

(in
 c

on
 :

bo
ol

)
+D

is
co

nn
ec

t()
 :

bo
ol

+I
sS

ee
kA

liv
e(

) :
 b

oo
l

-a
pp

_p
re

fs
 :

C
P

re
fe

re
nc

es
 *

-c
on

ne
ct

in
g

: b
oo

l
-c

on
ne

ct
ed

 :
bo

ol

C
Se

rv
er

C
on

ne
ct

+G
et

M
et

ho
d(

in
 n

M
et

ho
d

: i
nt

) :
 R

eq
ue

st
M

et
ho

d
+C

on
ne

ct
(in

 s
zA

dd
re

ss
, i

n
nP

or
t :

 u
ns

ig
ne

d
sh

or
t)

: <
un

sp
ec

ifi
ed

>
+C

lo
se

()
 :

<u
ns

pe
ci

fie
d>

+R
eq

ue
st

(in
 s

zU
R

L,
 in

 n
M

et
ho

d
: i

nt
) :

 <
un

sp
ec

ifi
ed

>
+R

es
po

ns
e(

in
 p

B
uf

fe
r)

#_
sz

H
TT

P
R

es
po

ns
e

: <
un

sp
ec

ifi
ed

>
#_

hH
TT

P
R

eq
ue

st
#_

sz
H

os
t

#_
dw

P
or

t

G
en

er
ic

H
TT

PC
lie

nt

27

3.2 Data Requirements

Since LiquidLan is not a scientific application or data-processing system, it does

not require any substantial data collection. However, if the file shares are viewed as data,

then such data must be available for the system to be useful. For example, if every node

on the network is behind a firewall then LiquidLan will not be able to do its job.

3.3 Hardware

The hardware requirements for using the LiquidLan client include a computer with

at least 64MB system memory, a 300 MHz x86 processor (for running Windows), and a

network interface card. The server requires hardware capable of running Linux or BSD.

For non-trivial networks, the server should have at least 128 MB memory, a 500 MHz

CPU, and a network interface compatible with the underlying network.

3.4 Testing Methods

I will undoubtedly continue to use many of the testing and debugging tools

included in Microsoft Visual Studio. I may also choose to use methods outlined in the ISO

9126 standard for evaluating the reliability, efficiency, and robustness of LiquidLan.

3.5 Scheduling Diagrams

I have compiled a Gantt chart (see next page) to show an approximation of the

schedule that was followed during design and development of LiquidLan.

ID
Ta

sk
 N

am
e

S
ta

rt
Fi

ni
sh

D
ur

at
io

n
Ap

r 2
00

6

4/
16

4/
23

2/
26

3/
12

4/
2

3/
26

3/
5

2/
19

1
6.

2w
3/

15
/2

00
6

2/
1/

20
06

D
ef

in
e

th
e

pr
ob

le
m

 a
nd

 re
se

ar
ch

 it
.

D
ra

ft
th

e
pr

ob
le

m
 s

ta
te

m
en

t,
an

d
re

qu
ire

m
en

ts
 a

na
ly

si
s,

 a
nd

 d
es

ig
n

sp
ec

ifi
ca

tio
n.

4
1.

2w
3/

22
/2

00
6

3/
15

/2
00

6
P

re
pa

re
 th

e
in

iti
al

 c
la

ss
 p

re
se

nt
at

io
n.

.4
w

3/
2/

20
06

3/
1/

20
06

B
ui

ld
 s

er
ve

r,
in

st
al

l L
in

ux
 a

nd

de
ve

lo
pm

en
t t

oo
ls

.

5
2.

2w
3/

24
/2

00
6

3/
10

/2
00

6
Fi

ni
sh

 e
xt

en
di

ng
 th

e
se

rv
er

 a
nd

 u
pd

at
e

S
am

ba
 p

at
ch

es
 (m

ov
e

to
 3

.x
)

6
1.

2w
3/

31
/2

00
6

3/
24

/2
00

6
Fi

ni
sh

 d
ev

el
op

m
en

t o
f D

LC
P

 a
dm

in

in
te

rfa
ce

 a
nd

 re
qu

es
t p

ro
ce

ss
in

g.

7
3w

4/
21

/2
00

6
4/

3/
20

06
Fi

ni
sh

 im
pl

em
en

tin
g

th
e

cl
ie

nt
 a

nd
 a

dd

D
LC

P
 s

up
po

rt.
 s

up
po

rt.

1.
2w

3/
10

/2
00

6
3/

3/
20

06
R

e-
fa

m
ili

ar
iz

e
m

ys
el

f w
ith

 c
lie

nt
 a

nd

se
rv

er
 s

ou
rc

e
co

de
s

an
d

fra
m

ew
or

ks
.

G
an

tt
C

ha
rt

4/
30

3/
19

M
ay

 2
00

6
M

ar
 2

00
6

Fe
b

20
06

2/
12

2/
5

4/
9

8
.6

w
4/

25
/2

00
6

4/
21

/2
00

6
Te

st
 s

ys
te

m
 th

or
ou

gh
ly

.
Fi

x
bu

gs
.

M
ak

e
re

fin
em

en
ts

.
M

ak
e

it
pr

od
uc

tio
n-

re
ad

y!

9 10

.2
w

4/
26

/2
00

6
4/

26
/2

00
6

P
re

se
nt

 a
nd

 d
em

on
st

ra
te

 fi
na

l p
ro

je
ct

(fo

r c
om

m
itt

ee
).

1.
2w

5/
8/

20
06

5/
1/

20
06

W
rit

e
th

e
fin

al
 re

po
rt.

5/
7

2 3

 3.5 Scheduling Diagram

29

4. Performance, Testing, and Evaluation

LiquidLan performs a lot of tasks that involve heavy network and disk I/O. Since

network and disk access both tend to be system bottlenecks, it is extremely important for

LiquidLan to have outstanding overall performance. Due to LiquidLan being implemented

in C/C++ and LANs typically having high-speed/low-latency data links, this has not

surprisingly been the case. File transfers are facilitated through the Windows API, which

result in highly efficient file transfers. LiquidLan can even enforce transfer quotas

(determined by the server operator) that limit the number of concurrent transfers to reduce

disk trashing and network congestion. LiquidLan has other policies that can be adjusted to

optimize performance for a given network.

For testing and evaluation, I will continue to use many of the testing and debugging

tools that ship with Microsoft Visual Studio 2005. I may choose to use methods outlined

in the ISO 9126 standard as well for evaluating the functionality, reliability, usability,

efficiency, maintainability, and portability of the system. Since I will be using

SourceForge to distribute LiquidLan, I can also use the tools they provide (such as

download statistics, bug tracking, feedback, etc.). Finally, I can benchmark the

performance of my system, and compare it against the performance of similar applications.

30

5. Summary and Conclusions

I am very pleased with how LiquidLan turned out. Windows/Samba networks have

been around for many, many years, but have always lacked a way to be efficiently

searched. The main purpose of LiquidLan is to provide a fast search mechanism and

feature-rich download management tools. I wanted to create a powerful file sharing

system for Windows Networks, and I believe I have succeeded in doing so.

I am proud of the software engineering skills I utilized while developing

LiquidLan. In the final week I tried diligently to crash LiquidLan, running as many as 100

concurrent transfers at high throughput. No matter how much I tortured the client, it would

not crash! I am very proud of this fact since parallel programming is regarded as a difficult

task.

31

6. Future Work

LiquidLan is currently a working prototype only, so there is still a lot left to do. On

top of the To-Do list is adding the ability for the client to programmatically create public,

read-only file shares for users. This will require traversing the user's file system for media

to share, asking the user which directories are OK to share, and then using an API to share

the files out with the proper security settings.

Another important feature that is yet to be implemented is opt-in support for the

server. This would tightly integrate with the client so that the user could opt-in through the

client's user interface, and even force the server to re-index the client machine's shares.

In the future I also want to add an auto-update mechanism, IPv6 support, MBCS

support (TCHAR conversion), improved Digital Rights Management (DRM), and last but

not least the option to use an un-patched smbclient.

32

References

1. Jun, S., Ahamad, M., Incentives in BitTorrent induce free riding, ACM SIGCOMM workshop

on Economics of peer-to-peer systems, 2005, pp. 116-121

2. Gummadi, K., Gummadi, R., Gribble, Ratnasamy, Shenker, Stoica, The impact of DHT

routing geometry on resilience and proximity, ACM conference on Applications,

technologies, architectures, and protocols for computer communications, 2003, pp. 381-

394.

3. Kusumoto, T., Kunichika, Y., Katto, J., Okubo, S., Tree-based application layer multicast

using proactive route maintenance and its implementation, ACM SIGCOMM workshop on

Advances in peer-to-peer multimedia streaming, 2005, pp. 49-58.

4. Tari, Z., McKinlay, M., Malhotra, M., An XML-based conversational protocol for Web

services, Proceedings of the 2003 ACM symposium on Applied computing, March 2003,

pp. 1179-1184

5. Hamra, A.A., Felber, P.A., Design choices for content distribution in P2P networks, ACM

SIGCOMM Computer Communication Review, October 2005, pp. 29-40

6. Wikipedia, 2006, http://en.wikipedia.org/wiki/Distributed_hash_table

